

Learner Credential Wallet Specification
Editors: Kim Hamilton Duffy, Ulrich Gallersdörfer, James Goodell, Matt Lisle, Brandon
Muramatsu, Philipp Schmidt

Copyright MIT, May 2021

This document constitutes deliverable Task 2, Sub-task 2.1 B as specified in the Department of
Education contract “Develop Open Source Standard for Student Credential Wallet” between the
Department of Education and MIT.

Introduction 1

Background 1
Interoperability is the primary goal 2
Scope and Intended Audience 2
Deliverables 2

Concepts and Foundations 3

Important Concepts 3
Terms 3
Roles and Ecosystem 6

Use Cases 6
Foundations 7
Normative References 7
Informative References 8
How this differs from the LER Wrapper and Wallet Specification 8
How this differs from the Universal Wallet 9

Requirements 9

Functional Requirements 9
Identifiers and Authentication 11
Additional Design Decisions and Goals 12

Wallet Flows and Procedures 13

Conceptual Wallet Flows 13
Issuance Request/Response Flow 13
Presentation Exchange Flow 16

Consent and Usability 19
In-Wallet Discovery 20

Wallet Design 20

Universal Wallet Interop Specification 20

This work is licensed under a Creative Commons Attribution 4.0 International License.

1

Core Wallet Interfaces and Extensions 20
Example Pseudocode 22
Plugins and Extensions 23
Migration 23
Representative Use Case of Extensibility 23

Verification and Trust 24

Progressive Trust - Is “More Trust” All that the Market Requires? 24
Verification, Validation, and Veracity 25
Verify VCs and VPs 27
Prove VP 28

Data Schema Interoperability 29

Ecosystem Supporting Cross-Standards Interoperability within the Universal Wallet 29

Intended Use and Next Steps 30

Annex A: Acknowledgements 31

Annex B: Mapping Conceptual Data Flows to Standards 32

Annex C: External Interface Calls and Payloads 37

Deep Link Example 37
Example Issuance Request 37
Example Issuance Response 38

Annex D: Issuer-Side Credential Issuance Flow 39

Issuer Sequence and Adaptations 39
Data Map 41

Annex E: Design Decision Factors 43

Decentralized Identifiers 43

Annex F: Proof of Identifier Control, Illustration 44

Introduction

Background

Digital wallets appear increasingly in our lives to handle a range of digital assets. These have
expanded beyond currency; we already use digital wallets such as Apple Wallet or other
applications to hold assets such as airline tickets; insurance cards; tickets to enter events such
as concerts, movies, or conferences; and, in some cases, drivers licenses or identity cards such

This work is licensed under a Creative Commons Attribution 4.0 International License.

2

as student ID cards. There is also increased interest in digital wallets as a convenient way to
store and manage digital learning or work records.

While digital wallets offer some conveniences in managing such a range of assets, lack of
standardization and interoperability among wallets presents risks, including friction for users and
issuers, reduced utility, and vendor lock-in.

Interoperability is the primary goal

This document is written to describe the design and implementation of the learner digital wallet
(“wallet”), as outlined in “Develop Open Source Standard for Student Credential Wallet”
deliverable of the US Department of Education OSS Wallet Application.

The approach outlined in this document builds on ongoing standards work in W3C, IEEE, and
the Decentralized Identity Foundation focused on interoperable verifiable credentials,
decentralized ecosystems enabling their secure exchange, and digital wallet standards enabling
interoperability for credential holders. These design choices promote broad interoperability and
relevance (even beyond learning and employment credentials).

Scope and Intended Audience

This specification describes the necessary wallet features and technical requirements enabling
individuals to curate and present their learning and employment records to others -- for
example, as applicants to educational programs or employers -- in an interoperable manner.

The specification is written for a technical audience seeking information about interoperable
credential wallets. Credentials related to educational, training and professional development are
the primary focus.

Aspects that are important to the overall goals of a learner-focused wallet but are beyond the
scope of this document include security, detailed privacy, and UI/UX considerations. Relevant
efforts are discussed in Intended Use and Next Steps.

Deliverables

The specification is the primary artifact fulfilling the “Develop Open Source Standard for Student
Credential Wallet” deliverable. It describes:

1. Wallet functional requirements
2. Conceptual wallet flows supporting flexible use of relevant standards and data models
3. Foundational, extensible wallet design based on, and in support of, (2).

This work is licensed under a Creative Commons Attribution 4.0 International License.

3

4. Design and implementation choices for wallet standards and credential data models for
initial wallet application.

5. Interoperability requirements in sufficient detail to be implemented in software code
6. Overview of extensibility mechanisms

This effort supported other standardization efforts such as the Universal Wallet 2020
Interoperability Specification and Modeling Educational Verifiable Credentials. See Intended
Use and Next Steps for a detailed list of those and other resources relating to the continued
development of this project.

Concepts and Foundations

Important Concepts

Important concepts used in this document come from the W3C Verifiable Credentials (VC) Data
Model1. Brief descriptions and clarifications in the scope of this document are provided below.
See the VC Data Model and other normative references for full normative definitions.

Terms
Table 1: VC Data Model Terms

Term Definition

Credential A set of one or more claims made by an issuer.

Issuer The entity asserting claims.

Subject A thing about which claims are made.

In this document, the subject is the student (or learner) possessing the wallet

Identifier A way to refer unambiguously to an entity, used here in the same sense as in the VC data
model.2 The subject of a credential is identified with the credentialSubject.id property in
a VC.

The identifier data type in the VC data model is a Uniform Resource Identifier (URI).

Verifiable
Credential (VC)

Tamper-evident credential with cryptographically verifiable authorship.

Presentation Data derived from one or more VCs, issued by one or more issuers, that is shared with a
specific relying party by the holder.

1 https://www.w3.org/TR/vc-data-model/
2 https://www.w3.org/TR/vc-data-model/#identifiers

This work is licensed under a Creative Commons Attribution 4.0 International License.

4

Verifiable
Presentation (VP)

Tamper-evident presentation with cryptographically verifiable authorship (cf. VC)

Holder A role an entity might perform when possessing one or more VCs and generating
presentations from them.

While the VC holder is often the same entity as the VC subject, the VC allows these roles to
differ. Examples where they differ:

● The VC subject is a minor; the VC holder is the minor’s guardian
● The VC issuer or some trusted party holds the VC on behalf of the subject

In this document, the holder is almost always the same entity as the subject. Any exceptions
are called out.

Verifier / Relying
Party (RP)

A role an entity performs by receiving one or more VCs (or VP).

The VC data model allows the verifier role to be distinct from the relying party, allowing for
deployments where a relying party trusts another party to perform verification on their behalf.

In this document, this distinction is not important, and the term relying party (abbreviated RP) is
preferred for clarity.

Verify/Verification The process whereby a relying party checks whether they will accept Verifiable Credential or
Verifiable Presentation. Unless specified otherwise, this is shorthand for the complete
acceptance process described in Verification, Validation, and Veracity.

Table 2: Other Terms and Concepts

Term Definition

Learner Individual who acquires skills and capabilities throughout their life, such as in
traditional or non-traditional learning contexts or employment contexts.

Learner is the preferred shorthand term in this document to refer to the individual
holding the wallet.

Learning and Employment
Records (LERs)

Digital record of learning and work that can be linked to an individual and
combined with other digital records for use in pursuing educational and
employment opportunities.

Use of LER in this document refers specifically to the format described in the
LER Wrapper and Wallet Specification3, which is a specific kind of VC.

Record; learning and
employment record “ler” (note
use of lower case)

Records that may or may not conform to the VC data model (including the LER
wrapper specification), yet may be handled by the wallet. These other records
may serve as a proxy for credential-like employment experience.

Note use of lower-case ler to distinguish from LER-conformant records. A
diagram depicting these terms is in Figure 1.

Decentralized Identifier A special type of identifier that enables verifiable, decentralized digital identity,
as defined in Decentralized Identifiers (DIDs) v1.0

3 https://cdn.filestackcontent.com/preview/FeqEJI3S5KelmLv8XJss

This work is licensed under a Creative Commons Attribution 4.0 International License.

5

Identity Proofing The process with the goal of answering the question “Does the record apply to a
known person?”4.

Holder and Subject Binding Refers to aspects of identity proofing as it relates to the VC data model,
summarized from Presentation Exchange v1.0.0 “Holder and Subject Binding”5
and LER Wrapper and Wallet Specification Annex D “Verification and
Authentication Details”6

Definition: The process of allowing a relying party to establish that a credential
(or credentials) are bound to a specific holder or subject

Purpose: Before accepting a credential or presentation as legitimate, a relying
party may wish to confirm that it is bound to the party presenting it. This may be
achieved through proof of control over an identifier, knowledge of a secret value,
or biometrics.

Proof of Identifier Control A specific mechanism for holder and subject binding, achieved through providing
cryptographic proof of control of the identifier embedded in the VC or VP7. This
approach to holder and subject binding is used in this document, but it is not
intended to be restrictive.

Note: the LER Wrapper and Wallet Specification uses the term identifier
authentication for this concept.

An illustration of how this is achieved is included in Annex F: Proof of
Identifier Control, Illustration.

Figure 1: Diagram of key credential-related terminology in this document. An LER is a specific kind of VC8.

4 LER Wrapper and Wallet Specification, ANNEX D – VERIFICATION AND AUTHENTICATION
5 https://identity.foundation/presentation-exchange/#holder-and-subject-binding
6 https://cdn.filestackcontent.com/preview/FeqEJI3S5KelmLv8XJss
7 https://identity.foundation/presentation-exchange/#proof-of-identifier-control
8 The wallet may store or handle (per implementor extensions) other records. Lower-case ler refers to records related
to learning and employment that do not follow the VC specification

This work is licensed under a Creative Commons Attribution 4.0 International License.

6

Roles and Ecosystem

Figure 2: VC Ecosystem diagram from the VC Data Model9.

Use Cases

The following use cases are referenced in this document

Table 3: Use Cases

Number Subject/Holder
Relationship

Record Types Description

1 Subject = Holder VCs (including
LERs)

A learner (= subject = holder) uses their wallet to aggregate a
collection of VCs (including LERs) matching some search criteria
into a bundle, packaged as a VP. During this process, the learner
may use their wallet to embed proof of identifier control.

2 Subject = Holder All records A learner uses their wallet to aggregate a collection of records,
which may include records not conforming to the VC Data Model,
matching some search criteria, into a bundle. In contrast with the
above use case, identity proofing may not be supported on the
non-conforming records (at least as defined here), but may be
passed to the relying party for subsequent handling.

3 Subject <> Holder VCs (including
LERs)

A holder who is not the subject -- such as a trusted party the
issuer or subject trusts to holds VCs on their behalf -- uses VPs to
transmit the subject’s VCs to another holder (enabling a chain of
custody and holder identity proofing)

9 While the VC model allows the subject to be different from the holder, the majority of uses mentioned here use the
case that subject = holder, and exceptions are called out. Also note that this document uses the term relying party as
a more general purpose term than verifier.

This work is licensed under a Creative Commons Attribution 4.0 International License.

7

Foundations

The following specifications are fundamental to this approach.

Table 4: Foundational Specifications

Specification Name Description

W3C Verifiable Credentials (VCs)
Data Model

A lightweight, interoperable standard for expressing a wide variety of tamper-
evident claims whose authenticity can be verified. The VC data model is
associated with a range of emerging standards around the request and transfer
of credentials, as well as identifier verification.

The VC data model functions as an interoperable, secure wrapper around a
variety of content (diplomas, transcripts, badges, competencies)10.

Credentials stored in the wallet described here assume a VC or Verifiable
Presentation (VP) data model.

LER Wrapper and Wallet
Specification

Informs wallet functional requirements and provides methods for wrapping
payload data models in the envelope, compatible with the VC data model.

Universal Wallet 2020 Provides an interoperable digital wallet standard and implementation. This
specification is based on the universal wallet interop specification and
describes how the wallet relates to it.

Normative References

● BBS+ Signatures 2020 [https://w3c-ccg.github.io/ldp-bbs2020]
● Comprehensive Learner Record Standard 1.0

[https://www.imsglobal.org/activity/comprehensive-learner-record]
● Confidential Storage 0.1 [https://identity.foundation/confidential-storage/]
● Credential Handler API 1.0 [https://w3c-ccg.github.io/credential-handler-api/]
● Decentralized Identifiers (DIDs) v1.0 [https://w3c.github.io/did-core/]
● DID Method Rubric [https://w3c.github.io/did-rubric/]
● did:web Decentralized Identifier Method Specification [https://w3c-ccg.github.io/did-

method-web/]
● Encrypted Data Vaults 0.1 [https://digitalbazaar.github.io/encrypted-data-vaults/]
● Identity Hub github repository [https://github.com/decentralized-identity/identity-hub]
● JSON [https://tools.ietf.org/html/rfc8259]
● JSON Web Signatures (JWSs) [https://tools.ietf.org/html/rfc7515]
● JSON Web Token (JWT) [https://tools.ietf.org/html/rfc7519]

10 The examples above apply to learning and employment contexts (the focus of this paper), but VCs can
also be used for content such as health records, and even cases where the subject of the credential is not
human,e.g. bills of lading for shipping, inventory in supply chains, and sensor data packets sent among
self-driving vehicles.

This work is licensed under a Creative Commons Attribution 4.0 International License.

8

● JSON-LD [https://cdn.filestackcontent.com/preview/FeqEJI3S5KelmLv8XJss]
● LER Wrapper and Wallet Specification

[https://cdn.filestackcontent.com/preview/FeqEJI3S5KelmLv8XJss]
● Linked Data Proofs [https://w3c-ccg.github.io/ld-proofs/]
● Linked Data Signatures for JWS [https://w3c-ccg.github.io/lds-jws2020/]
● Modeling Educational Verifiable Credentials [https://w3c-ccg.github.io/vc-ed-models/]
● Open Badges Standard [https://www.imsglobal.org/activity/digital-badges]
● OpenID Connect Core [https://openid.net/specs/openid-connect-core-1_0.html]
● OpenID Connect Discovery [https://openid.net/specs/openid-connect-discovery-

1_0.html]
● OpenID Connect Credential Provider [https://mattrglobal.github.io/oidc-client-bound-

assertions-spec/]
● Presentation Exchange [https://identity.foundation/presentation-exchange/]
● Schema.org [http://schema.org/]
● Self-Issued OpenID Connect Provider (SIOP) DID Profile v0.1

[https://identity.foundation/did-siop]
● The did:key Method v0.7 [https://w3c-ccg.github.io/did-method-key/]
● Universal Wallet 2020 [https://w3c-ccg.github.io/universal-wallet-interop-spec/]
● VC HTTP API [https://w3c-ccg.github.io/vc-http-api/]
● VC Status List 2021 [https://w3c-ccg.github.io/vc-status-list-2021/]
● Verifiable Credentials Data Model 1.0 [https://www.w3.org/TR/vc-data-model/]
● Verifiable Presentation Request Specification [https://w3c-ccg.github.io/vp-request-

spec/]
● Wallet and Credential Interactions (WACI) [https://identity.foundation/waci-presentation-

exchange/]
● WebKMS v0.1 [https://w3c-ccg.github.io/webkms/]

Informative References

● Introducing OIDC Credential Provider [https://medium.com/mattr-global/introducing-oidc-
credential-provider-7845391a9881]

● Verifiable Credentials Flavors Explained [https://www.lfph.io/wp-
content/uploads/2021/02/Verifiable-Credentials-Flavors-Explained.pdf]

● Verification, Validation, and Veracity
[https://github.com/digitalcredentials/docs/blob/main/verification/verify_credential.md]

How this differs from the LER Wrapper and Wallet Specification

This work builds on, and complements, the LER Wrapper and Wallet Specification that was
published by the T3 Innovation Network in two ways.

This work is licensed under a Creative Commons Attribution 4.0 International License.

9

First, the LER Wrapper and Wallet Specification outlined a set of functional requirements for a
learner wallet. This effort builds on that foundation, specifying how those requirements can be
fulfilled.

Second, the LER Wrapper and Wallet Specification provided a critical fast track to
interoperability that leverages the W3C Verifiable Credential data model, where payloads based
on multiple existing standards may be encoded flexibly in their original structure. This achieves
interoperability at the envelope layer, which is critical for systems seeking to reuse transport,
storage, and verification methods across a variety of credential types. However, this approach
requires the need for payload format-specific processors/parsers at multiple points in the
credential exchange flow, e.g., wallets and relying party systems each have to know how to
decode the payload.

In contrast, this specification builds on the ongoing effort in the W3C VC-EDU task force to
represent native-VCs, enabling deeper semantic interoperability and alignment through linked
data. This document also provides guidance on an approach for cross-payload semantic
interoperability and data linking beyond the use cases that are in scope for VC-EDU payloads.

How this differs from the Universal Wallet

This specification builds on, but is different from the W3C Credentials Community Group
Universal Wallet Interoperability Specification. Specifically, this document focuses on wallet use
cases applied to the education domain. As such:

● This specification addresses topics such as progressive trust that would not make sense
in the case of a currency wallet.

● Currency-specific functions such as direct exchange do not apply here.
● New use cases are supported that have to do with different kinds of learning and

employment records encoded using different standards, such as discovery of transcript
and employment records mapped to common skills through linked data.

○ E.g., PESC transcript in JSON and HR Open employment record in JSON; both
reference the same skill and a wallet’s support for a query to “give me all things
that reference that skill”.

Requirements

Functional Requirements
The LER Wrapper and Wallet Specification Functional Requirements (Section 1.4) provide the
basis of our functional requirements, which are further refined in this section.

1. Request Credential

This work is licensed under a Creative Commons Attribution 4.0 International License.

10

a. The wallet must be able to (on behalf of the holder) request a credential from an
issuer

i. The credential request must allow the request to enable holder and
subject binding

ii. The wallet must be able to request a credential in response to a holder
action

b. The wallet may be able to request a credential using a subscribe model in which
VCs representing earned credentials from one or more issuers are
requested/received/persisted so that the wallet stays up-to-date with available
credentials from those issuers

c. The wallet may be able to request other records that serve as a proxy for
credential-like employment experience

2. Receive Credential
a. The wallet must be able to receive credentials.
b. The wallet must be able to decline credentials.
c. The wallet must be able to persist credentials and store the appropriate metadata

(see Persist Credential)
d. The wallet may be able to unpack the credential payload, but it is not required to

do so.
e. The wallet may be able to request, listen for, or subscribe to credential updates, if

offered, and if the holder chooses to enable.
i. The holder must be able to decline a credential received via subscription.

f. The wallet may be able to persist other records that serve as a proxy for
credential-like employment experience

3. Persist Credential
a. Wallet must be able to persist credentials with native format encoding from

multiple standards.
b. Stored credentials must be persisted with sufficient metadata to allow the wallet

to execute the minimal functions described in these requirements.
c. Credentials may be stored in both the native format and/or a processed format

preferred by the wallet so long as the wallet can fully produce the original record
intact (see Send Credentials).

d. Wallet must be able to respond to a holder's request to remove a credential and
stop persisting that credential.

4. Select Credentials by querying the wallet data store
a. The wallet must be able to discover LERs at least by the name property and

description property in the LER.
b. The wallet may discover content by other parameters.
c. The wallet may expose an external API.

5. Send Presentation
a. The wallet must have a mechanism to create and submit a Verifiable

Presentation to a relying party in response to

This work is licensed under a Creative Commons Attribution 4.0 International License.

11

i. A wallet owner action
ii. A request for a VP obtained from an RP through a push or pull action, if

approved by the wallet holder
b. The wallet may have a mechanism for receiving and processing presentation

requests
c. The wallet must allow the presentation to include holder and subject binding
d. The wallet may support pre-packaged presentation bundling options for

convenience to the user, depending on parameters such as the type of relying
party, credentials requested, etc.

6. Log Activity
a. The wallet may be able to log activity (e.g., credentials and presentations sent

and received for privacy auditing)
7. Holder and Subject Binding

a. The wallet may be able to generate identifiers enabling proof of identifier control
i. Examples include pairwise decentralized identifiers, other decentralized

identifiers, and other methods resulting in a URI identifier that can serve
as subject in a Verifiable Credential or a holder in a Verifiable
Presentation

b. The wallet may be able to generate proofs of identifier control
8. Management functions

a. The wallet may be able to manage identity and identifier data. This includes the
ability to:

i. perform CRUD operations on decentralized identifier methods (not just
create, from previous). I.e., update key material, read, delete

ii. Group identifiers, attributes, and credentials into “persona” or profiles for
use in different contexts

b. The wallet may be able to manage connections (e.g. to issuers, RPs, and other
parties)

c. The wallet may be able to manage privacy and sharing settings

Identifiers and Authentication

Before accepting a credential or presentation as legitimate, a relying party may wish to confirm
that it is bound to the party presenting it. This may be achieved through proof of control over an
identifier, knowledge of a secret value, or biometrics11.

This document will focus on the first one -- proof of identifier control -- which is commonly used
in the VC ecosystem. The VC subject may be represented as a DID that the subject controls,
enabling cryptographic proof of control of the identifier12.

11 See “Holder and Subject Binding” in Presentation Exchange
12 See “Proof of Identifier Control in Presentation Exchange

This work is licensed under a Creative Commons Attribution 4.0 International License.

12

As of early 2021, the emerging OIDC Credential Provider specification offers another promising
approach to cryptographically verifiable URIs, which allows -- but does not require -- DIDs. This
approach enables wallets to request credentials from OpenID providers (OP) such that they are
reusable (“re-provable”) to RPs without requiring the OP’s subsequent involvement13.

Note: the LER Wrapper and Wallet Specification uses the term identifier authentication, for this
concept.

Additional Design Decisions and Goals

● Minimize technical and infrastructure requirements for learners and issuers
● Ensure requirements are applicable/adaptable to mobile and web wallets
● Enable integration into existing systems (including authentication solutions)
● Ensure design is applicable/extensible to emerging protocols (such as authentications

built with awareness of decentralized identifiers)
● Use JSON-LD data formats where possible due to advantages of Linked Data in the

educational data standards ecosystem, but support integration of other data formats,
including JSON-formatted VCs, non-VCs (including unstructured data)

● Support range of proof mechanisms (JSON-LD, JWT, data minimization proofs), with
initial prioritization of JSON-LD proof mechanisms (based on initial use cases).

The wallet design uses interfaces and plugins to achieve the flexibility described above. The
initial reference wallet implementation will use the following specific protocols:

● HTTP/REST services
● Auth: OIDC and SAML supported by default

This document also describes how to integrate support for other protocols.

Learner wallet implementers should ensure the wallet is accessible to the largest number of
users. While a full consideration of this topic is outside of the scope of this document, some
relevant factors are listed below:

● Accessibility guidelines
● Functionality across web and mobile
● Supporting deployment on a broad range of devices

Implementers should consider the following storage requirements:

13 See Introducing OIDC Credential Provider

This work is licensed under a Creative Commons Attribution 4.0 International License.

13

● When using on-device storage in a mobile app, the presence of large, minimally
compressible data in the credentials (such as images) is likely to dominate space
requirements

● Wallet implementers may provide storage estimates to their users based on typical use
(e.g. 100 credentials, each with a 2MB embedded image, might require around 210 MB).

● Wallet implementers may enable off-device storage, so that learners may choose the
storage location.

Wallet Flows and Procedures

Conceptual Wallet Flows

This section describes conceptual end-to-end wallet flows relevant to requirements listed in the
previous section. The abstractions identified in this conceptual view simultaneously inform a
wallet design enabling adaptation to a range of standards, technical stacks, issuer deployment
and wallet implementation choices.

While wallet-focused flows and standards are the focus of this specification, representative
issuer-focused considerations are included in Annex E: Issuer-Side Credential Issuance Flow
for completeness.

Issuance Request/Response Flow

Figure 3: Issuance End-to-End Flow (Conceptual)

The first 3 steps are only briefly discussed14 for the following reasons:

● Notify Credential Availability is largely up to the issuer; it could simply be implemented
as a personalized email to the learner

14 Nonetheless, the conceptual flows support these steps and allow for variation they require

This work is licensed under a Creative Commons Attribution 4.0 International License.

14

● Install/Setup Wallet is a one-time prerequisite
● Establish Connection manifests in widely varying ways and orderings in relation to the

other steps.

Issuance flow steps are labeled with one of the following categories:

● Issuer: Informed by standards, but realized entirely by issuer decisions
● Wallet / Interface: Interface points between wallet and issuer
● Wallet: Wallet-internal operations, which areabstractions supporting a variety of

message formats and proof mechanism understood by external parties

Table 5: Issuance Flow Steps

Step Name Category Description

Notify Credential
Availability

Issuer School or issuing institution typically initiates the process by sending a
notification (such as an email) informing the learner that they are eligible to
receive digital credentials, with relevant prompts to proceed (along with links to
install compatible wallets, if not done already).

The prompt to receive a credential may appear as a deep link into the wallet,
possibly encoded as a QR code, depending on the learner/device (mobile, web)
interaction pattern.

Install / Setup
Wallet

Wallet/
Interface

Learner must perform one-time wallet installation / setup.

For mobile credential wallets, this involves installing a mobile app.

Establish
Connection

Wallet/
Interface

Encapsulates the ways a learner may connect to an issuer or relying party,
including peer-to-peer connections and well-known authentication protocols
already used by the issuer/relying party.

While depicted as an explicit step, the manner in which this occurs varies widely
depending on the protocols/deployments used.

This may be used to mutually exchange identifiers.

This step ensures the wallet can access the relevant issuer services.

Select Identifier Wallet The wallet allows the learner to create and manage identifiers to be associated
with credentials. This abstraction supports use of identifiers enabling proof of
identifier control (such as decentralized identifiers) as well as other digital
identities.

Create Issuance
Request

Wallet Message generated by the wallet to specify credential(s) the wallet holder wishes
to be issued along with desired subject identifier. This abstraction supports a
range of issuance request message formats.

Send Issuance
Request

Wallet/
Interface

Encapsulates the range of transport protocols that deliver the Issuance Request
to the issuer.

Issuance Process Issuer Procedure in which the issuer issues verifiable credential(s) and conveys them to
the holder via the wallet.

This work is licensed under a Creative Commons Attribution 4.0 International License.

15

Receive Issuance
Response

Wallet/
Interface

Encapsulates the range of transport protocols that deliver the Issuance
Response to the wallet.

Response contains verifiable credential(s), generally wrapped with additional
metadata.

Validate Issuance
Response

Wallet Verify and validate the response, including the embedded VC.

Persist VC Wallet Persist the credential in secure, flexible, accessible storage.

The following demonstrates a representative detailed procedure achieving the core wallet steps
shown above.

Table 6: Example Wallet Steps in Issuance Request/Response Flow

Example Wallet Steps in Issuance Request/Response Flow

Assumptions:
1. Student wallet has been installed and/or setup
2. Connection has been established or occurs as part of the issuance flow
3. Wallet is opened (via deep link, user action, etc) and provided with inputs below.

Inputs:

1. vc_request_endpoint: Credential issuance request endpoint (may include additional
parameters)

2. domain: Any string or URI, provided by the issuer

3. challenge: Signing challenge. Should be a randomly-generated string15

4. Authentication discovery information (or already authenticated)

5. (optional) Expected subject identifier

Step: Brief Description:

15 https://www.w3.org/TR/vc-imp-guide/#presentations

This work is licensed under a Creative Commons Attribution 4.0 International License.

16

1. Select
Identifier16

Wallet generates or allows selection of an identifier (depending on the
DID methods it supports).

If an expected subject identifier is provided, wallet confirms it has control of
the expected subject identifier. Some protocols may also include a way to
express only certain DID methods.

2. Create Issuance
Request

a. Wallet forms an issuance request17, populated with identifier,
domain, and challenge

b. Wallet signs the issuance request with the key material
corresponding to identifier

● Send Issuance Request: e.g., wallet sends the request to the issuer at
vc_request_endpoint (may involve auth step)

● Issuance Process: Issuer processes request, issues VC(s), sends
● Receive Issuance Response

3. Validate
Issuance
Response

Wallet unwraps the VC(s) in the issuance response, and validates/verifies it

4. Persist VC Wallet persists VC(s) securely based on pre-configured storage option or
user selection.

Presentation Exchange Flow

Figure 4: Presentation Exchange Flow

16 Coverage of identifier selection best practices is outside the scope of this specification, but deserves
special ongoing attention from the learning and employment community. The DID specification describes
privacy considerations (such as correlation risk) resulting from identifier reuse, as well as mitigation
strategies. Current practices range from reuse of identifiers for non-sensitive data to use of pairwise
unique identifiers.
17 The request may provide additional details about the types of credentials the learner wishes to receive
(if supported by the issuer), such as: level of granularity or preferred credential format

This work is licensed under a Creative Commons Attribution 4.0 International License.

17

The first 2 steps are only briefly discussed18 for the following reasons:
● How the RP enables discovery of Presentation Requests and/or submission endpoints is

influenced by standards but is largely up to the RP
● Establish Connection manifests in widely varying ways and orderings in relation to the

other steps.

Further, Receive/Validate Presentation Request steps occur only if the RP makes a
Presentation Request available. The remaining steps in the sequence may also occur in
response to a wallet holder-initiated action.

Category Guide:

● Relying Party: Informed by standards, but realized entirely by RP decisions
● Wallet / Interface: Interface points between wallet and RP
● Wallet: Wallet internal operations; abstractions supporting a variety of message formats

and proof mechanisms understood by external parties

Table 7: Example Wallet Steps in Presentation Exchange Steps

Step Name Category Description

Discovery Relying
Party

Widely variable method that the RP enables a holder to initiate the
exchange process

Establish Connection Wallet/
Interface

(Same as above)

Receive Presentation
Request

Wallet/
Interface

The wallet may receive a presentation request; abstraction allows
flexible formats

Validate Presentation
Request

Wallet Encapsulates ways a wallet may validate the RP’s request for a VP (if a
request is provided). This may include payload validation, checking
whether the wallet supports the request, and the types of identifiers or
proof mechanisms the RP supports.

Construct Presentation Wallet Encapsulates the process by which the wallet software selects
credentials and/or derivations19 consistent with the presentation request
criteria (if provided) or with the wallet holder’s search criteria.

The wallet software (and/or associated agents) has a role in credential
selection for improved convenience to the wallet holder, but wallet holder
consent is a critical feature. This may be derived from wallet holder
preference settings (e.g., credentials of this type may always be shared)
and/or explicit approval before sending.

Prove (VP) Wallet/ Apply a proof, typically a cryptographic signature, to the VP. Abstraction
enables a range of proof mechanisms.

18 Nonetheless, the conceptual flows support these steps and allow for variation they require
19 Such as enabled by selective disclosure proof mechanisms

This work is licensed under a Creative Commons Attribution 4.0 International License.

18

This step may achieve proof of identifier control20.

If a Presentation Request is provided, it may specify acceptable proof
mechanisms.

Create Presentation
Submission

Wallet/
Internal

Message generated by the wallet to specify credential(s) the wallet
holder wishes to be issued along with desired subject identifier. This
abstraction supports a range of issuance request message formats.

Send Presentation
Submission

Wallet/
External

Deliver the Presentation Submission to the RP. This abstraction enables
support of a range of transport protocols

Handle Presentation
Submission

Relying
Party

The RP verifies and validates the VP and continues with business
processes

The following demonstrates a representative detailed procedure achieving the core wallet steps
shown above.

Table 8: Example Wallet Steps in Presentation Request/Response Flow

Example Wallet Steps in Presentation Request/Response Flow

Assumption: Wallet has been installed and opened (via deep link, user action, etc) and provided with
inputs below. This may be initiated by the issuer sending a notification or other prompt indicating that the
learner is eligible to receive a credential and how to proceed, along with instructions about setting up the
learner wallet (if not already done).

Inputs:

1. presentation_submission_endpoint: Credential issuance request endpoint (may include
additional parameters)

2. domain: (Optional) Any string or URI, provided by the issuer

3. challenge: (Optional) Signing challenge. Should be a randomly-generated string21

4. Authentication discovery information (or already authenticated)

5. (optional) Expected subject identifier

20 See Annex F: Proof of Identifier Control, Illustration
21 https://www.w3.org/TR/vc-imp-guide/#presentations

This work is licensed under a Creative Commons Attribution 4.0 International License.

19

Step: Brief Description:

1. Validate
presentation
request
(optional)

If the wallet receives a presentation request, validate to determine whether
to accept.

2. Construct
Presentation

a. Run query against credential storage. Query comes from
presentation request (if provided) or from wallet holder criteria

b. Builds presentation containing:
○ Matching credentials and/or derivations
○ identifier (newly generated or matching presentation

request)
○ domain and challenge, if provided

3. Prove Prove, resulting in a VP (which may used as proof of identifier control)

4. Create
presentation
submission

Wrap in additional metadata required depending on specification, such as
Presentation Submission

Consent and Usability
Consent is a critical aspect of a learner-focused wallet, but usability remains careful in achieving
cognizant consent. Overwhelming the user with information -- for example, by requesting the
learner to review the detailed (machine-targeted) credential data before submitting -- is just as
unsatisfactory as a cursory review step.

Addressing this problem will be an ongoing effort. The following examples show how a wallet
might better merge the concerns of consent and usability:

● A wallet holder might choose to allow a trusted web application to receive all learner and
employment records, but would like to review the request and explicitly "accept" before
passing them along

● A wallet holder might decide certain records are acceptable to share with anyone, and
doesn’t want to review the request

● Requests for consent should be phrased to concisely convey when sensitive data occurs
in a record. For example: “[Relying party] is requesting to be able to see your date of
birth, your full transcript, etc. Do you consent?”

○ The name/type of record may not clearly communicate to the wallet holder what
range of sensitive data appears in the record; a wallet with deeper semantic
awareness of data fields has the opportunity to help.

○ The wallet may also present records in a manner that omits sensitive data the RP
doesn’t require (assuming the record is issued in a manner amenable to selective
disclosure or minimal disclosure techniques).

This work is licensed under a Creative Commons Attribution 4.0 International License.

20

In-Wallet Discovery

The previous “LER Wrapper and Wallet Specification” specified a minimum set of wallet
functions and related metadata for discoverability and selection of LER payloads within a wallet.
This specification carries forward those in wallet discovery functions, e.g., selection of LER’s
based on name and description, and supports additional discoverability by other properties. The
previous specification did not address a wallet’s ability to upack or semantically interpret the
standards-based payload. This specification addresses the semantic interpretation and in wallet
discovery based on payload data. It also points to emerging and anticipated standards and
infrastructure to address translation across payloads. See the following section on “Data
Schema Interoperability” for more on this topic.

Wallet Design

Universal Wallet Interop Specification

The goal of the Universal Wallet Interop Specification is to provide interoperability for a wide
range of digital wallets, from credential wallets to currency wallets.

The specification defines data models and interfaces -- some relevant to all digital wallets,
others applicable to specific domains or use cases, such as credential wallets or currency
wallets. The specification’s associated open source codebase serves as a reference
implementation, or wallet SDK, and includes:

● Data Model for expressing wallet entities
● Interfaces for expressing wallet operations
● Reference implementation

While these elements are currently collocated in a single repository, they will be split as the
efforts mature through the standardization process.

The rest of this section provides details about how the Universal Wallet serves as a foundational
layer to the learner wallet, and how its extensibility mechanisms work in the context of the
learner wallet. Ongoing evolution will occur in the Universal Wallet and associated repositories
listed in Intended Use and Next Steps.

Core Wallet Interfaces and Extensions

Base interfaces expose cross-cutting functionality relevant to all wallets. Examples include:
● Adding and removing items
● Locking and unlocking the wallet
● Importing and exporting from backup

This work is licensed under a Creative Commons Attribution 4.0 International License.

21

Interfaces exposing specific functionality are layered on top. Examples include:

● Currency wallets can transfer money
● Credential wallets can sign, issue, and prove credentials

Figure 5: Depiction of Universal Wallet Interface and Data Model Layers

Wallet implementers can similarly achieve further specialization by adding the ability to
read/interpret contents of different types of credential payloads, offering richer, domain-specific
functionality. This could also provide the ability to translate across VC payloads for the purpose
of semantic query alignment.

SDK Interfaces and Data Models
Basic interfaces and data models relevant to the initial implementation of the student wallet are:

● Universal Wallet Core
● VC Wallet Layer
● Additional Interfaces (signatures below)

○ ConnectionProvider
○ IdentifierPlugin
○ CredentialRequest
○ CredentialExchange

This work is licensed under a Creative Commons Attribution 4.0 International License.

22

The additional interfaces will support Issuance and Presentation Exchange flows generalized
way for implementers of the wallet and will be candidates for inclusion in the Universal Wallet as
they mature.

Default implementations of these interfaces are described in Layered Design Decisions, and
implementers extend to support additional identifier methods, storage mechanisms,
request/exchange implementations, etc.

Example Pseudocode

The following pseudocode demonstrates how a wallet implementer might interact with the SDK
as part of a credential request flow.

//
// CREATE ISSUANCE REQUEST
//

// generate new identifier
did = identifierPlugin.get() => URI (e.g., DID)

// create and prove VP
wallet.prove(did, options) => VP

// create issuance request

This work is licensed under a Creative Commons Attribution 4.0 International License.

23

ir = new IssuanceRequest(VP)

// send request
wallet.request(ir) => IssuanceResponse
//
// HANDLE RESPONSE
//

// obtain VP response
response.getVC() => VC

// verify
wallet.verify(VC)

// store
wallet.store(VC)

Plugins and Extensions

When using the universal wallet reference implementation, wallet implementations select a set
of plugins, where each plugin implements a set of interfaces. The plugin/interface model allows
integration of a range of backing storage options, exchange protocols, etc. Developers decide
which interfaces and plugins (or develop new ones) to add to wallets.

For example, the universal wallet defines a required interface Storage to support pluggable
storage implementations. For a mobile wallet, a default option might be on-device storage, but
wallet implementations may provide additional storage plugin implementations and/or allow
selection by the user, either through configuration, or on-demand selection.

Migration

Migration across wallets is eased through wallet manifests expressing capabilities, permissions,
requirements, and interfaces it supports. For example, moving from an LER specific wallet to a
general VC wallet, could get warning about loss of richer support. This also allows expression of
what level of security the wallet is appropriate for.

Representative Use Case of Extensibility

Through the extensibility models described above, the wallet could allow the learner to perform
meaningful queries across their records (including VCs, LERs, and lers), enabling efficient
curation actions (such as when building a collection of records to present to a potential
employer).

This work is licensed under a Creative Commons Attribution 4.0 International License.

24

Consider a simple use case in which a learner wants to prepare a portfolio of important learning,
training, and employment milestones, sorted in reverse chronological order of effective date. At
scale (as learners collect more records), this presents a challenge, as the field names vary
across schemas and organizations.

Among ler/LER schemas, CEDS “Credential Definition Date Effective” corresponds to:

Schema Class/Type Element/Property

CTDL Credential dateEffective

HR Open CertificateType firstIssued

 EducationDegreeType date

PESC Student.AcademicRecord.AcademicAw
ard

AcademicAwardDate

Schema.org EducationalOccupationalCredential dateCreated

The wallet’s extensibility/plugin mechanisms enable queries across different payloads of all
records (including VCs, LERs, and lers). A translation plugin/service (with updates to ensure up-
to-date coverage of new schemas) enables a rename translation of these date fields required to
perform this operation.

Verification and Trust

Progressive Trust - Is “More Trust” All that the Market Requires?

While the technical community seeks methods for absolute verifiability of digital credentials, the
status quo that it hopes to replace is both binary--either a verifier takes action to verify a
credential or they don't--and flawed.

In comparison to digital financial transactions, the market currently applies lower expectations
for academic and employment credentials. In the case of education credentials 32% of small
organizations don’t bother to contact a verification service or PS Institution that issued a
candidate’s credential. There is of-course some risk of academic credential fraud, but many
organizations don’t see the risk as great enough to pay for verification services or the time it
would take to verify on their own. So if verifiable credentials even incrementally reduce that risk
it is providing benefit to the marketplace.

This work is licensed under a Creative Commons Attribution 4.0 International License.

25

“Despite the reported benefits of screening, many small organizations don’t do as much
as they could, possibly leaving themselves vulnerable. When screening a job candidate,
respondents reported that criminal searches (97 percent) and identity verification (81
percent) were the most common checks. But only 58 percent of respondents verify
previous employment history, and only 32 percent verify education credentials.”22

While the goal of 100% verifiability of academic credentials is worthy of current efforts in the
technical community, the market has signaled that a low-friction path to greater trustability may
have greater benefits than a higher friction solution offering 100% trust. If the perceived
cost/effort of using a perfectly verifiable (binary) solution is no less than making a phone call or
sending an email, then many organizations will not want it. As an alternative we propose a
progressive trust model that uses multiple verifiable facts to build increasing levels of trust
without making work for the verifier or issuer. Instead of a binary trusted vs. non-trusted
credential, the verifier would receive a verifiable credential with a trustability index, analogous to
levels of assurance allowing trust requirements to vary depending on the context of its use.

Multiple factors go into trustability, which the Verifiable Credentials ecosystem proposes to
categorize as discussed in the next section.

Verification, Validation, and Veracity

Fortunately, the “verification” aspect of Verifiable Credentials does not prescribe a single
verification mechanism that’s meant to apply to all credentials; it is extensible to adapt to a
range of requirements. The “Verification, Validation, and Veracity” process for Verifiable
Credentials (3V) describes three categories of checks in establishing whether a relying party or
verifier may trust a given credential.

These categories, and examples, are pictured below:

22 https://www.shrm.org/resourcesandtools/hr-topics/risk-management/pages/screening-small-
businesses-risk.aspx

This work is licensed under a Creative Commons Attribution 4.0 International License.

26

In brief:

● Verification is the set of checks, with corresponding mechanisms, meant to apply to all
types of verifiable credentials. These checks assure conformance to standards.

● Validation is a set of checks that are conceptually cross-cutting but vary greatly in
implementation. A subset of these are handled by verification libraries through callbacks;
the rest are handled by callers

● Veracity is the set of checks that would not be performed by common VC libraries, but
are performed by RPs/verifiers in assessing whether to accept the credential.

The veracity category may be used to restrict and/or relax the type of credentials accepted:

● Example of Restrict: a relying party will only accept credential definitions described in
the Credential Engine Registry, and only those issued by the set of issuers authorized to
issue instances of that credential definition

● Example of Relax: a consortium or clearinghouse will accept un-revoked credentials
that were issued by schools that are now out of business.

Further details are available in the draft specification Verification, Validation, and Validity, which
will be the ongoing source for describing this process.

Who Verifies Credentials and Presentations
Each role in the VC ecosystem may wish to verify VCs and VPs23. For example:

● Relying Party: performs verification upon receipt from of a VP from a holder in order to:

23 Further, as discussed in Verification, Validation, and Veracity, each party may apply different criteria
when assessing the same credential, particularly at the Veracity layer

This work is licensed under a Creative Commons Attribution 4.0 International License.

27

○ Verify the authenticity and integrity of the VCs it contains
○ Optionally perform proof of identifier control on the holder (which may be the

same as the subject(s) in the VC(s)
● Issuer: may perform verification upon receipt of a VP presented by the learner (via the

wallet) as proof of identifier control
● Holder/Subject (via the wallet): performs verification before accepting a VC or VP from

an issuer
○ This gives confidence that the credential(s) will be useful to the learner
○ Note: the issuer may deliver a VP as a wrapper for a bundle of VCs and/or as

part of a signing challenge provided by the subject

Verify VCs and VPs

This section describes how the verification procedures for the wallet implementation will perform
by default. The checks described here fall into the categories of Verification and Validation
categories; see descriptions in Verification, Validation, and Validity.

While default implementations of additional inputs (signature suites, document loaders, and
proof purpose) will be provided, the extensibility mechanisms enable implementer
customization, including additional Veracity checks.

A VP contains:

● a list of VCs, and
● may contain a separate proof (enabling proof of identifier control)

Accordingly, the Verify VP procedure uses the Verify VC procedure.

Table 9: Verify VC

Verify VC

Inputs:

1. vc: A Verifiable Credential

2. checkStatus: Optional function for credential status

Steps:

1. Check well-formed according to the VC Data Model
2. Check proof

a. Credential hasn’t been tampered with

This work is licensed under a Creative Commons Attribution 4.0 International License.

28

b. Issuer id (identifier)/key check, per caller-provided loaders*
i. Signed with an expected issuer identifier/key
ii. Signed by key authorized for the purposes of signing

c. Expected proof properties are present
3. Check timeliness and status, per caller-provided checkStatus function**

* Default document loaders and DID resolvers will support methods specified in Implementation Choices
** Default function will perform a basic timeliness check using the usual interpretations of
issuanceDate and expirationDate fields and a status check using methods specified in
Implementation Choices.

Table 10: Verify VP

Verify VP

Inputs:

1. vp: A Verifiable Presentation

2. domain: (optional; if the requesting party provided one) Any string or URI

3. challenge: (optional; if the requesting party provided one) Expected signing challenge.
Should be a randomly-generated string24

Steps:

1. VP Check
a. Check VP well-formed according to the VC Data Model
b. Check proof

i. Presentation hasn’t been tampered with
ii. Holder id (identifier)/key check, per caller-provided loaders*

1. Signed with an expected holder identifier/key
2. Signed by key authorized for the purposes of signing

iii. Expected proof properties are present
c. If the requesting party provided a domain and challenge, check the VP contains the

expected values
2. For each VC in VP: verify(VC)

* Default document loaders and DID resolvers will support methods specified in Implementation Choices.

Prove VP

Proving a VP is analogous to signing/issuing a VC, except the signature is applied at the
presentation layer.

24 https://www.w3.org/TR/vc-imp-guide/#presentations

This work is licensed under a Creative Commons Attribution 4.0 International License.

29

A common wallet use case for this is providing proof of identifier control, in which case, the
wallet forms a presentation as follows:

1. Add to holder field an identifier the wallet controls
2. Generate a proof (often a cryptographic signature), resulting in a VP

Note that this is a VP that doesn’t contain credentials, as permitted by the VC data model.

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1"
],
 "type": "VerifiablePresentation",
 "holder": "did:example:ebfeb1f712ebc6f1c276e12ec21",
 "proof": {
 "type": "RsaSignature2018",
 "created": "2020-09-14T21:19:10Z",
 "proofPurpose": "assertionMethod",
 "domain": "http://www.example.com",
 "challenge": "e506f108-9c74-4c52-b84c-a7019c83328c",
 "verificationMethod": "did:example:ebfeb1f712ebc6f1c276e12ec21#keys-1",
 "jws": "pYw8XNi1..Cky6Ed="
 }
}

Data Schema Interoperability

Ecosystem Supporting Cross-Standards Interoperability within the

Universal Wallet

Universal learner wallets may contain data payloads that represent many kinds of assertions
about the learner based on experiences at all academic levels as well as workplace and
informal learning contexts. Data standards developed for traditional educational contexts use
different schemas developed in different communities of practice than standards for workplace
learning or other contexts. This “Tower of Babel” problem is being addressed in this Universal
Wallet Specification.

To be future-proof, a universal wallet must be able to accomodate data schema that don’t yet
exist, documenting learning experiences and competency definitions for fields that have not
been developed.

This work is licensed under a Creative Commons Attribution 4.0 International License.

30

It is unlikely that any one standard or even one standards organization can ever cover current
and future schemas needed to capture evidence of all learning experiences, competencies and
credential assertions. However, the Universal Wallet can be universal if it is extensible and
integrated into an ecosystem that is continuously updated with the information needed to
accommodate new standard data definitions and schemas, and metadata needed to make
sense of the various schemas.

There are two parts to the recommended approach to make wallets universal across standards
and future-proof.

1. Extensibility using a plugin mechanism
2. Metadata ecosystem used by translation services and wallet plugins

Extensible Plugin Mechanism

(See Plugins and Extensions of this document.)

Open Metadata Ecosystem
The envisioned distributed metadata network will provide metadata of maps and transformation
rules across and between various wallet payload standards. For the purposes of this
specification we will provide a simple proof-of-concept example of the kind of metadata to
accomplish this mapping and transformation of data.

The metadata ecosystem will take time to mature. In the meantime, such as with pilots of this
specification, isolated sets of translation metadata may be used with a wallet ‘translation plugin’
to accomplish an isolated demonstration of the approach.

Intended Use and Next Steps
This document constitutes deliverable Task 2, Sub-task 2.1 B as specified in the Department of
Education contract “Develop Open Source Standard for Student Credential Wallet” between the
Department of Education and MIT.

The approach and recommendations described in this document will undergo continued
development25, with credit to the U.S. Department of Education (Contract Number:
91990020C0105), in the following locations:

Group / Standard Item

25 To also include interoperability test suites

This work is licensed under a Creative Commons Attribution 4.0 International License.

31

Universal Wallet 2020 [https://w3c-
ccg.github.io/universal-wallet-interop-spec/]

Wallet Data Model, Interfaces, and SDK

Digital Credentials Consortium github repo
[https://github.com/digitalcredentials]

● Wallet Mobile Application (based on Universal
Wallet SDK)

● Issuance and Verification Libraries
(conformant to vc-http-api)

W3C VC-EDU Task Force [https://w3c-ccg.github.io/vc-
ed/]

● Wallet Requirements
● Wallet Flows
● Linked Data Contexts, Draft Protocols, and

Query Extensions
● Credential Models and Examples; specifically

“Modeling Educational Verifiable Credentials”
[https://w3c-ccg.github.io/vc-ed-models/]

Vc-http-api [https://github.com/w3c-ccg/vc-http-api] Verification Guidelines

Decentralized Identity Foundation Wallet Security
Working Group [https://identity.foundation/]

Wallet Security

As these efforts mature, they may be submitted for further standardization at the appropriate
body. This may include a W3C or IEEE Working Group26, as appropriate.

Annex A: Acknowledgements
Funding for this research report was provided by the U.S. Department of Education (Contract
Number: 91990020C0105). The opinions expressed herein do not necessarily represent the
positions or policies of the U.S. Department of Education, and no official endorsement by the
U.S. Department of Education should be inferred.

Additionally, the US Department of Education’s funding supported the development of the
following specifications referenced in this document:

● Universal Wallet 2020
● vc-http-api (Verification, Validation, and Validity)
● Modeling Educational Verifiable Credentials

Editors:

● Kim Hamilton Duffy
● Ulrich Gallersdörfer
● James Goodell
● Matt Lisle

26 For example, the IEEE Learning Technology Standards Committee (LTSC)
[https://sagroups.ieee.org/ltsc/] may be appropriate for learning-related standards.

This work is licensed under a Creative Commons Attribution 4.0 International License.

32

● Brandon Muramatsu
● Philipp Schmidt

Technical Contributions and Feedback On This And Supporting Specifications:

● Phil Barker
● Anthony Camilleri
● Sam Curren
● Jeff Dieffenbach
● Taylor Kendal
● Adam Lemmon
● Kerri Lemoie
● Phillip Long
● Nate Otto
● Sudesh Shetty
● Jacksón Smith
● Manu Sporny
● Orie Steele
● Nathan Tonani

This builds on ongoing work of the following organizations:

● W3C Credentials Community Group [https://www.w3.org/community/credentials/]
● Decentralized Identity Foundation [https://identity.foundation/]
● IEEE Learning Technology Standards Committee (LTSC) [https://sagroups.ieee.org/ltsc/]
● Internet Identity Workshop [https://internetidentityworkshop.com/]
● Rebooting Web of Trust [https://www.weboftrust.info/]

Annex B: Mapping Conceptual Data Flows to
Standards
This section maps the conceptual wallet flows from the previous section to emerging
specifications and protocols. To enable application to the widest range of relevant standards,
(non-normative) terminology is introduced.

While some of the specifications/protocols listed below are in draft status, none are
prerequisites for the wallet SDK; rather the wallet SDK abstractions can be mapped as they
mature.

This work is licensed under a Creative Commons Attribution 4.0 International License.

33

Figure B1: Issuance Request/Response Flow, Refined

This work is licensed under a Creative Commons Attribution 4.0 International License.

34

Figure B2: Presentation Exchange Flow, Refined

This work is licensed under a Creative Commons Attribution 4.0 International License.

35

Table B1: Conceptual Data to Standards Map and Initial Implementation Choices

Concept
Name

Type Specification Examples Initial Implementation Choices

Issuance
Request /
Response

Protocol ● OpenID Connect (OIDC)
Credential Provider

● [Spec/Location pending]
● [Extension] OpenID Connect

(OIDC) Credential Provider

Presentation
Request /
Response

Protocol ● Credential Handler API 1.0
● Wallet And Credential

Interactions (WACI)

● [Spec/Location pending]

Issuance
Request

Data Model ● Verifiable Presentation
Request Specification

● OIDC Credential Provider
“Credential Request”

● Verifiable Presentation for
purpose of proof of identifier
control27

● OIDC Credential Provider
“Credential Request”

Issuance
Response

Data Model ● Verifiable Presentation or
Verifiable Credential

● OIDC Credential Provider
“Credential Response”

● Verifiable Presentation28
● OIDC Credential Provider

“Credential Response”

Presentation
Request

Data Model ● Presentation Exchange
“Presentation Definition”

● Verifiable Presentation
Request Specification

● Verifiable Presentation
Request Specification
(Query)29

● [Extension] Presentation
Definition

Presentation
Response

Data Model ● Presentation Exchange
“Presentation Submission”

● Verifiable Presentation

● Verifiable Presentation
● [Extension] Presentation

Submission

Identifier
(Issuer and
Subject)

Data Model Decentralized Identifier Generation:
● did:key

Resolve:

● did:key
● did:web
● [Extension] did:sidetree

27 See VP Request specification Example 4 https://w3c-ccg.github.io/vp-request-spec/#example-4-a-
didauth-response
28 Using the VP to wrap the issued VC(s) supports multiple VCs as well as holder signature for cases
where the holding party conveying the credentials may not be the issuing party
29 https://w3c-ccg.github.io/vp-request-spec/#format

This work is licensed under a Creative Commons Attribution 4.0 International License.

36

Authentication Protocol Variety of authentication
techniques, ranging from traditional
methods such as OIDC and SAML
to DID-based (or DID-aware)
methods such as SIOP-DID or
OIDC Credential Provider

● OIDC, SAML (using existing
issuer/RP relationship with
learner)

● [Extension] OIDC Credential
Provider

Confidential
Storage

Data Models
and Protocols

Emerging alignment in Confidential
Storage30

Local secure storage with secure
backup/export options

Key / Secret
Vault

Protocol WebKMS Local secure storage with secure
backup/export options

Verification/Vali
dation

Standard-
based
procedures

VC/VP Verification VC/VP Verification

VC APIs API
specification

vc-http-api, which includes
endpoints for:

● VC Issuance
● VC Proof
● VP Verification
● VP Submission

vc-http-api

Proof
Mechanism31

Data Model,
Procedures

● Linked Data Proofs 1.0
● JWTs

Prove:
● Ed25519Signature2020

LinkedData Proof Suite
● [Extension] JWT
● [Extension] BBS+ Signatures

2020

Resolve:

● Linked Data Proofs 1.0
● JWT

Status
Checking
Mechanism

Data Model,
Procedures

Status List 2021 Status List 2021

Table B2: Data Format Extensions

Type Description

LER Flavor of Verifiable Credential with LER semantic support

30 The Confidential Storage draft specification represents emerging alignment among different
decentralized identity-based secure storage specifications, such as Encrypted Data Vaults and Identity
Hubs.
31 See Verifiable Credentials Flavors Explained for a thorough overview of VCs and proof mechanisms,
including those supporting selective disclosure

This work is licensed under a Creative Commons Attribution 4.0 International License.

37

Open Badge v2.0
(example)

Open Badge v2, used to demonstrate non-VC data support and
interoperability

Annex C: External Interface Calls and Payloads
Non-normative; variable per wallet implementation. This section describes reference
implementation, which establishes a pattern other wallet implementations may follow.

Deep Link Example
This example demonstrates how the reference implementation uses a deep link to open the
wallet to an issuance request screen, pre-populated with the necessary parameters. Parameter
names are non-standard.

dccrequest://request? // deep link to open wallet
 &auth_type=<auth_type> // code | saml
 &issuer=<issuer> // depends on previous param; for OIDC the issuer URI32
 &vc_request_url=<vc_request_url> // credential request endpoint
 &challenge=<challenge> // VP challenge (GUID)

Example Issuance Request
Example of an Issuance Request payload that is generated by the wallet and sent to the issuer.
The holder field contains the identifier generated by the wallet, and the proof is signed by the
corresponding identifier, enabling the issuer to ensure the submitter “controls” the identifier
(“proof of identifier control”)

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1"
],
 "type": "VerifiablePresentation",
 "holder": "did:example:ebfeb1f712ebc6f1c276e12ec21",
 "proof": {
 "type": "RsaSignature2018",
 "created": "2020-09-14T21:19:10Z",
 "proofPurpose": "assertionMethod",
 "domain": "http://www.example.com",
 "challenge": "e506f108-9c74-4c52-b84c-a7019c83328c",
 "verificationMethod": "did:example:ebfeb1f712ebc6f1c276e12ec21#keys-1",
 "jws": "pYw8XNi1..Cky6Ed="

32 See OIDC Provider configuration: https://openid.net/specs/openid-connect-discovery-
1_0.html#ProviderConfig

This work is licensed under a Creative Commons Attribution 4.0 International License.

38

 }
}

Example of request to issuer:

POST /<request_endpoint>
 Content type: application/json
 Authorization header
 Parameter:
 - issuanceRequest (VerifiablePresentation)

Example Issuance Response
Example of an Issuance Response payload that is created by the issuer and conveyed to the
wallet. The VC is wrapped in a VP to allow for multiple VCs to be returned, as well as to
accommodate scenarios where the entity delivering the credentials is different from the issuer.

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1"
],
 "type": "VerifiablePresentation",
 "holder": "did:web:digitalcredentials.github.io",
 "verifiableCredential": [
 {
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://www.w3.org/2018/credentials/examples/v1",
 "https://w3id.org/security/jws/v1",
 "https://w3id.org/dcc/v1"
],
 "id": "https://digitalcredentials.github.io/samples/certificate/1fe91f0f-4c64-48c8-
bfc8-7132f75776fe/",
 "type": [
 "VerifiableCredential",
 "LearningCredential"
],
 "issuer": {
 "type": "Issuer",
 "id": "did:web:digitalcredentials.github.io",
 "name": "Sample Issuer",
 "url": "https://digitalcredentials.github.io/samples/"
 },
 "issuanceDate": "2021-01-19T18:22:34.772810+00:00",
 "credentialSubject": {
 "type": "Person",
 "id": "did:example:456",
 "name": "Percy",

This work is licensed under a Creative Commons Attribution 4.0 International License.

39

 "hasCredential": {
 "type": [
 "EducationalOccupationalCredential",
 "ProgramCompletionCredential"
],
 "name": "DCC Program Completion Credential",
 "description": "Awarded on completion of the digital credential program",
 "awardedOnCompletionOf": {
 "type": "EducationalOccupationalProgram",
 "identifier": "program-v1:Sample",
 "name": "Digital Credential Program",
 "description": "Educational program teaching how work with digital credentials",
 "numberOfCredits": {
 "value": "1"
 }
 }
 }
 },
 "proof": {
 ...
 }
 }
],
 "proof": {
 ...
 }
}

Annex D: Issuer-Side Credential Issuance Flow
This annex demonstrates how the wallet protocols can be adapted into issuer flows.

Issuer Sequence and Adaptations
Figure D1 expands the credential Issuance flow to include a representative issuer sequence.
This also demonstrates a critical distinction of decentralized identity issuance flows from
traditional methods from an issuer perspective -- the need to collect the learner identifier before
issuing the credential.

This work is licensed under a Creative Commons Attribution 4.0 International License.

40

Figure D1: Expanded Credential Issuance Flow with Issuer Steps

The “break in flow” referenced in Figure D1 accommodate two categories of adaptations:

1. Asynchronous workflows (in which the wallet may not expect an immediate response)
2. Out-of-band triggers, including scenarios such as:

a. Issuer already knows the subject identifier
b. Issuer pre-populates credentials by batch, but adds the identifier and issues the

credential on-demand

Figure D2 demonstrates the “break in flow” more precisely.

Figure D2: Expansion of “break in flow”

This work is licensed under a Creative Commons Attribution 4.0 International License.

41

Data Map
Figure D3 demonstrates how standard inputs into a credential (including those coming from a
student information system or other record source) become merged with the subject identifier,
and then issued as a Verifiable Credential.

This work is licensed under a Creative Commons Attribution 4.0 International License.

42

Figure D3: Expanded Issuance Request/Response Flow with Issuer Step

This work is licensed under a Creative Commons Attribution 4.0 International License.

43

Annex E: Design Decision Factors

Decentralized Identifiers
Decentralized Identifiers offer an interoperable, portable, and individual-controlled form of
identifiers for use in VCs. There are many emerging DID methods (implementations of DIDs)
with different characteristics, which the wallet can support flexibly33 based on the interoperable
IdentifierPlugin data model.

For purposes of this work, these were the desired characteristics for selecting which DID
methods to include as part of the initial wallet implementation34:

● Low or no cost
● Portable, learner-controlled, decentralized
● Standards-compliant, has multiple implementations
● Cryptographic keys are rotatable OR issuer supports credential reissuance

As of the time of publication, did:key provided the best fit despite the lack of ability to rotate
cryptographic keys; the workaround is that issuers must reissuance for such deployments.

Many DID methods were considered. Those that came close to satisfying the above desired
characteristics (they had challenges at the time of publication but are promising near-term
alternatives):

● did:sidetree: specification was not yet stable, but expected to be soon (with multiple
implementations)

● did:peer: Suitable when peer relationship is already established (with RP), which would
impose additional prerequisites

For issuer identifiers, did:web was selected, largely a matter of trust and convenience in our
early implementations for issuers with bootstrap trust from their web domains (and
corresponding established processes for maintaining updates).

33 Including non-DID (URI) identifiers
34 The DID Method Rubric (https://w3c.github.io/did-rubric/) offers guidelines for how to choose DID
methods.

This work is licensed under a Creative Commons Attribution 4.0 International License.

44

Annex F: Proof of Identifier Control, Illustration
This section illustrates a flow establishing proof of identifier control, as well as the wallet’s role.

Figure E1: At issuance time

1. At issuance time, the learner’s wallet, via the wallet’s secure identifier vault, generates

an identifier that it will be able to prove control over. In the initial wallet implementation,
this is achieved as follows:

a. The wallet has a secure vault that manages identifiers. These identifiers are
backed by (and bound to) cryptographic keys.

b. At issuance time, the wallet sends a credential request that includes the identifier
c. The issuer includes that identifier in the VC as the subject of the VC

This work is licensed under a Creative Commons Attribution 4.0 International License.

45

Figure E2: At exchange time

2. When providing a credential to a relying party, the wallet is able to:

a. Look up the cryptographic key material in its vault that’s associated with the
subject identifier of the credential(s).

b. Create a cryptographic signature with that key material, proving control over the
identifier.

